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I. INTRODUCTIO:\

Let C[a, b] be the normed linear space consisting of all real-valued
continuous functions defined on the closed interval fa, b] (a b) with the
uniform norm 11 max { 1;(x)': x in [a, brio Further. let oF be a non­
empty subset of era, b]. For an arbitrary element, ¢, in C[a, b], an element F
in.--F is said to be a best approximation from .--F to 4> if! F 4> G tb
for all G in .--F. The set oF is called an approximating family of functions
on [a, b]. In order to obtain useful answers to questions about existence.
uniqueness, and characterization of best approximations it has been necessar)
to consider special approximating families.

In defining a varisolvent family.:iF in 1961 (e.g.. see [8]), Rice extracted the
properties of polynomials which were useful in the development of the
linear theory. At this time a fairly complete theory of varisolvent families
in the sense of Rice exists. Although Rice's definition of varisolvency allows
as a special case the family of exponential sums, it does not include the much
studied family of generalized exponential sums (sums of exponentials with
polynomial coefficients).

Motivated by Rice's definition of varisolvency and by the intriguing
alternation theorem for generalized exponential sums given by Braess [2],
we have attempted to define a class of nonlinear families of approximating
functions which includes both of the above families. At the risk of c()nfusion.
we call families of this c!,:" varisolvcnt familie,
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In this section, .~ will be a subset of the continuous real-valued functions
[a, b] and will denote the maximum norm on era, b]. A degree ofa function
in.~ will be assigned ifit possesses certain properties relative to the family:F.
After some preliminary lemmas are presented, the notion of a varisolvent
family as an approximating family of functions is introduced. In general,
when approximating a continuous function by elements of a varisolvent
family, one is not guaranteed either the existence or the uniqueness of a best
approximation. However, an alternation theorem is given which characterizes
best approximations from a varisolvent family.

First, some definitions are needed.

DEFINITION 2.1. Let {Ii};~] be a sequence of closed intervals (n ~ I).
The sequence {lJ:1 will be called an increasing sequence of closed intervals
if for every x in Ii and every y in Ii+! (1 ~ i < 11), it it srue that x < y.

DEFINITION 2.2. Let f be a continuous real-valued nonzero function on
[a, b]. The function f is said to alternate n times (n ~ 0) on [a, b] if there is an
increasing set of points {xi}7~i in [a, b] such that f = I f(xi)I
(i = J,... , 11 + I) and f(xi) f(Xi+1) < 0 (1 ~ i < 11 + I). The increasing set
of points {x;};'~~ (n ~ 0) that satisfy the above is called a set of alternation
points for f.

DEFINITION 2.3. Let:F be a family of functions in C[a, b] and let F be
in:F. The ordered pair of integers (n] , n2) with 111 ~ 0 and 112 ); I is a degree
()f F with respect to :F if the following conditions are met:

(I) Let E > 0 and a in {-I, I} be arbitrarily chosen. If n] = 1, then
there is a function, G, in .'F such that il F - Gil < e and a(~ l)(F(x) ­
G(x» 0 on [a, b]. (The factor (-1) is superfluous for this part of the
definition.) If 111 > 1, if 0 is an arbitrary element of {O, I}, and if ([c i , d;]};',;15

is an arbitrary increasing sequence of closed intervals where C1 = a and
dn _0 = b, then there is a function, G, in :F such that F - Gil < E and

1

a(-J)i(F(x) - G(x)) > 0 on [Ci, d i ] (i = 1, ... ,111 - 0).

(2) If G is a continuous function on [a, b) and a ~ Xl < ... < X "2+1 ~ b
such that (F(Xi) - G(xi»)(F(xi+1) - G(Xi+1)) < 0 (i = I, ... , 112), then G is not
in the family .F

It is noted that n1 = 0 is permissible and that if (0, 112) is a degree ofF with
respect to .~, only the integer 112 gives any information about the function's
relation to the rest of the family. Furthermore, if F has (11 1 , 11 2) as a degree,
(0, 112) is also a degree.
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What the above definition is saying is that if the function. F. in j h~l\

(111 .112) as a degree with respect to .'F, then there is a function G in1'-c that is
arbitrarily close to F on [a, b] such that F G alternates in sign on III

(11 1 - I) intervals. Furthermore, every member of .F that is distinct from F
crosses Fat most 11 2 - I times in (a, b). If an approximating family.F.
satisfies Rice's definition of Property A [8]. then the first part of Definition 2.3
would be satisfied. but the converse is not necessarily true.

Remark 2.4. If (n] ,11 2) is a degree of F with respect to:F. then III ii, .

To see this, assume 11 2 11] (thus 11 1 I). Let E I." I. ,) O. and
:rc" d,];;"] be an increasing sequence of closed intervals (i I ..... II[)

with Cl c a and dill b. Because (III ,112) is a degree of F. there j, a G in f

such that (1 )'(F(x) G(x)) 0 on [e,. d,l (i I. .... II[). Ld\
Hc, -- di). which is in [c, . {n (i 1,. .. , Ill)' Since ( I )'(F(x,) C;(x,)) 0

(i 1.... ,11]). we have ( 1)(F(x;) G(x;))(F(x"I) G(.\,d) 0 (i

1.... ,111- I). But since III I 11 2 • we have (F(x,) - G(x/))(F(x I)

G(Xill)) 0 (i 1, ... ,112)' This implies G is not inFo which is a contra-
diction.

The definition seems to indicate that a function is permitted to have more
than one degree. This is. in fact. the case. If F has a degree III] .11") with
respect to .'F. the following lemma gives some information as to what other
degrees F may have.

LEM~IA 2.5. It" F belollgs 10 F alld has degrec (111 . 11 2 ) with rcsjJect to:F
then

(I) (11 1 1, n2) is also a degree ofF with re~pect to f as long as II J is 1101

:cera or three:

(2) (11] .11 2 - I) is also a degree ofF with respect to f.

Proof. (I) In the case where II] 1 or 2. the result follows immediately
from the definition. Let 11 1 3. Let positive E. a in l I. 1: and () in :0. I: be
chosen arbitrarily. Let {[Ci ' d,n~lll IJ be an arbitrary increasing sequence or
closed intervals where ("1 ~- a and d"ll- n b. If 0 O. then there exist G
in .'F such that F- G E and a( -ly(F(x) G(x)) . 0 on [c,. iii]
(i L. .. , 111 - I) since (n J • 112) is a degree of F. If is 1. let fL

HC",2- dl/,:l) O. Define i,= [c j , di] (i J, .... III 3), .Ii/I"
[dn,--3 -I- fL, dn,--3T 2fL], i n,-1 .c= [dn,-a 3fL, d",:!" 4fL], .III, (C","' d"I J ·
Since (111 ,112) is a degree of F, there exist G in .'F such that F G E and
a( --l)i(F(x) - G(x)) 0 on J;(i ~~ J, ...• 11 1), Thus a( -1)i(F(x) G(x)) 0
on [Ci, di] (i ~= L. .. , 111- 3) and a(--l)"'(F(x)-- G(x)) a( -1)1I1-2(F(x)

G(x)) 0 on (C"'_ 2' d"j 2J.

(2) The proof follows immediately from the definition.
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To illustrate why n1 =Ie 3 in Lemma 2.5 we now construct §, a family of
functions on (a, b] such that the zero function belongs to § and the zero
function has (3, 3) as a degree, while (I, 3) and (2, 3) are not degrees. Let §

denote the set of all functions of the form c(x - x1)(x - x 2) or c(x - xJ
where c is an arbitrary real constant and the x/s are distinct values in the
open interval (a, b).

An immediate consequence of Lemma 2.5 is the following corollary.

COROLLARY 2.6. If F in .% has a degree (n1 ,n2) with respect to § and
n1 ?: 3, then (mj , m2) is also a degree where 3 ~ mj .-s;; nl and n2 ~ m2 < 00.

IfFin.% is an approximation from § to a continuous real-valued function,
4>, the next four lemmas give sufficient conditions for the existence of an
approximation to 4> that is better than F.

LEMMA 2.7. Let F in .% have a degree (n l , n2) with n1 ?: 2 and let 4> belong
to C(a, b]. 1/ F - 4> alternates nj - 1 times and does not alternate nl times,
then there is afunction, G, in § such that II G - 4> if < II F - 4> II.

Proof Let {xi}~21 be a set of alternation points for F - 4> in [a, b]. Define
X o = a, X n1+1 = b,

XiL = min{x E [X;-l , x;]: (F(x) - 4>(x» = (F(x;) - 4>(Xi)}

and

XiV = max{x E [Xi' Xi+d: (F(x) - 4>(x» = (F(x;) - 4>(Xi»} (i = 1,... ,111),

The point Xl(XiV) does exist since the set of which we are taking the minimum
(maximum) of is compact, and F - 4> is continuous.

Claim. XiU < X;+l (i = 1,... , nj - 1). Indeed this is true, since
(F(XiU) - 4>(XiU» = (F(Xi) - 4>(Xi», (F(x;+1) - 4>(x;+1) = (F(Xi+l) - 4>(XiH»
and (F(Xi) - 4>(xi)(F(xi+l) - 4>(x;+1» < 0, it follows that (F(xiV) - 4>(XiU»
x (F(X;+l) - 4>(X;+1» < °and thus XiU =Ie X;+1 . Continuing in the proof of
the claim, suppose X;+l < XiV. We also have Xi < X~l < XiU < Xi+1 . Define
{Yi}~2i2 such that Yj = Xj (j = 1,... , i), Yi+l = X;+l' Yi+2 = XiU, and
Yj = Xj-2 (j = i + 3, ... , nl + 2). Thus F - 4> alternates at least I1j + 1 times
and hence alternates 111 times which contradicts the assumption that F ~ 4>
does not alternate 111 times. Therefore the claim is true. Define JA =
t min{x;+l - XiV: i = 1,... , nl -- I} and define 11 = (a, XIU + JA], Ii =
(x/ - IL, XiV + JA] (1 < i < n) and In = (x~ - JA, b]. Because of the wayr 1 1

JA is defined, {Ii }r21 is an increasing sequence of closed intervals. Select a in
{-I, I} such that a(-I)(F(x1) - 4>(X1» = IIF-- r/>[i. It follows from the
definition of the intervals [xl, X i

li ] (i ==c ] , ••• , nl) that El is a positive number,
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where E 1 min, 1.. ... 11, min F q, a( 1)'( F(.y) q,(x): x in I,:. \

short continuity argument will show that supli Fix) q,(x) : x in [a, b)
U;'\ I,] < F- q" therefore E~ , defined as E2 F q,
sup{, F(x) -- q,(x)l: x in [a, b) U;'\ I,:, is positive. Let E min(E 1 , E:z}.

Since (n 1 ' 11 2) is a degree of F, there exist (/ in] such that F G E and
a( -l)i(F(x) G(x» 0 on I, (i I, ... , /II)'

Now we show that G (p F q,. It suffices to show that
G(x) q,(x)! F q, for all x in (a, b). If x is in [a, b] U;"j I; . then

G(x) -- q,(x) . G(x) F(x) F(x) ,p(x) E F(x) $(x)

E2 , , F(x)- ep(x)

E"l sup i' Fey) - ep(x)! :y in [a, h)
III I
U IiI
i-,l

F $

nl)' by defInition of G and EJ , respectively,If x is in Ii for some i ( 1
we have

and

a( -1 )'( G(x) - F(x)) o

F q,.

By adding these inequalities, we obtain

- F q, a( 1ji(G(x) cP(x)) F cP forallxinl.,

F cP for x in U;\ I,. Thus the proof of thethus i G(x)- q,(x)
lemma is complete.

Remark 2.8. The proof of this lemma does not require the fact that the 8
used in Definition 2.3 be allowed to assume the value one. Now, by using the
fact that 0 may assume the value one. one can prove the following lemma.

LEMMA 2.9. Let Fin] haue (/ degree (3, /I~) with respect to .F and let q,
belong to era, b]. If F - q, alternates once but does not alternate twice, the/l
there exist G in .7 such that G q, F - q, .

COROLLARY 2.10. Let F in .~ haue a degree (n1 . n~) with respect to ]
(n1 ?: 2) and let q, belong to C[a, b]. If F q, alternates once and does /lot
alternate n1 times then there exist G in .7 such that G q, - F $.

The proof follows from Lemmas 2.7, 2.9, and Corollary 2.6.

LEMMA 2.11. Let F in .~ hare a degree (3. n~) with respect to .F and let
q, belong to C[a, b). If F r!, is /lot a CO/ll'tWlt fil/lction a/ld F cb does /lot
alternate O/1ce, the11 there is afll/lctio/1, C;, inF such that G $ F (i~
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Proof Let (ai' b1) C [a, b] such that I F(x) - 1>(x)I < II F ~ 1> ii for all x
in (ai' b1]. It is noted that a nonempty (ai' b1) exists since F - 1> is not a
constant function. Define II = [a, a1], 12 = (a1 + l(b1 ,- a1), bI - t(b1 - a1)),

13 = [b1 ,b], let a be in {-, I, I} such that there is a y in [a, b] with
a( -l)(F( y) - 1>( y)) = I!F - 1> Ii (a is well defined since F - 1> does not
alternate once). Furthermore, define E1 and E2 as EI = min{l! F - 1> I: T

a( -l)(F(x) - 1>(x)): x in II U la}, E2 = ii F - 1> - sup[1 F(x) - 1>(x) 1 : x in
(ai, b1)}. It is noted that EI and E2 are positive. Let E = min(El' E2). Since
(3, n2) is a degree of F, there exist G in .¥ such that \1 F ,- G i < E and
a(-l)i(F(x) - G(x)) :> 0 on Ii (i = I, 2, 3).

Now we show that G -- 1> i! < Ii F- 1> . It suffices to show that
I G(x) - 1>(x) [ < 1.1 F - 1> !l for all x in (a, b]. If x belongs to (aI' bl), we have
i G(x) - 1>(x) 1 ~ I G(x) - F(x) I + ! F(x) - 1>(x) 1 < E + 1 F(x) - 1>(x) 1 ,s:;
E2 + IF(x) - 1>(x)I ~ E2 + sup[1 F(x) -' 1>(x) [: x in (ai' b1)} ==1 F - 1> I!. rf x
belongs to Ii for i = 1 or i = 3, we have

--E < a(-l)i(G(x) - F(x)) == a(-l)(G(x) - F(x)) < 0

and

F- 1> + E1 ~ a(-l)(F(x) - 1>(x)) ~ IF- 1>1'.

Thus adding the above two lines gives

F - 4> [i + (EI - E) < a(-l)(G(x) - 4>(x)) < !I F - 4> II

or i G(x) - 1>(x) 1 < Ii F - 4> II for all x in 11 U 13 , Since 1G(x) - 1>(x) I <
F - 1> If for all x in (a, b], the proof of the lemma is complete.

LEMMA 2.12. Let F in % have a degree (n1 , n2) with respect to .¥ (nl = 1
or n1 = 2) and let 1> belong to C[a, b]. IfF and 1> are not identical on [a, b] and
ifF ~ 1> does not alternate once then there exist G in ff such that G - 4> II <
:iF - 4> Ii·

Proof Let E = min{ll F - 4> [I, + a(-1)(F(x) - 4>(x)): x in (a, b]) where a
belongs to {-I, I} such that for some y in [a, b), a( -l)(F( y) - 1>( y)) =
:1 F -- 1> il. Since (1, n2) is a degree ofF(use Lemma 2.5 if n1 = 2), there exist
Gin % such that II F - Gil < E and a( - 1)(F(x) - G(x)) > 0 on [a, b]. It is
easily shown that G is the desired function.

We now give a necessary condition for Fwith a degree (n1 , n2) with respect
to % to be a best approximation from % to a continuous function on [a, b].

THEOREM 2.13. Let F in % have a degree (n1 , n2) with respect to ff and
let 1> belong to qa, b]. Ifil F - 1> II ~ II G - 1> II for aff G in ff, then F - 1>
alternates at least nl times or F -- 1> is a constant function.
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Proof If n1 = 0, then by continuity of F - 4) on [a, b), there is an .\ 111

[a, b] such thati F(x) ._- 4>(x) F - 4>
If 11] ?'" 1, assume F --. 4> is not a constant function, and F . - 4> does not

alternate 11] times; then the previous lemmas insure the existence of a G inF
such that G 4>, < Ii F - 1, 'I, which is a contradiction.

Remark 2. I4. The conclusion in Theorem 2.13 can be made stronger by
using Lemma 2.12. That is, if F is in .j' and F has ( I, nz) or (2, I1 z) as a degree
with respect to :F, then F- 4> G 4> for all G in :F implies that the
error function F- 4> cannot be a nonzero constant on [a, b].

If Definition 2.3 were weakened by requiring 8 to be zero, then an
alternation theorem weaker than Theorem 2.13 would follow, e.g.,

EXAMPLE 2.15. Let:F denote the set of all functions in C[ - I, 1Jof the
form c(x x1)(x - xz)(x- x:l ) where c is an arbitrary real constant and the
Xi'S are arbitrarily chosen such that I Xl X 2 X;) I. The zero
function has (0,4) as a degrec. The only property that the zero function is
Jacking that prevents it from having both (2,4) and (4,4) as degrees is that
the 8 in Definition 2.3 may not assume the value one. As Remark 2.8 indicates
if 4> alternates three times but does not alternate four times, then there is a G
in:F such that C·- 4> < q, Ii' By a similar argument, if q, alternates once
but not twice, there is a G in J such that I G 9 , q, ff, from this
family, zero is the best approximate to a function q" then the maximum
number of alternations of 4> must be either 0, 2, 4, or more. This is illustrated
by the functions I, 2x ._- 1, and 8x4 - 8xz I, each of which have the zero
function as a best approximation from .ff, and they alternate a maximum of
zero, two, and four times, respectively, with respect to the zero function.

The following theorem gives a sufJlcient condition for thc function F with :1

degree (111 , 11 2) with respect to J to be a best approximation to <b in C[a, b].

THEOREM 2. I6. Let F belong to J and Ie: .p belong to qa, b]. II F (p

alternates 11 2 times in [a, b] and if F has a degree (11 1 , n2) H'ith r('.speet to .Joe •

then F - q, C -- q,ii jlJI' all G in j-.

Proof Suppose G is in C[a, b] such that f q, G -~ (p Let
{xi}~;i 1 be a set of alternation points for the function F - cp. Let a be
in {--J, l} such that a(1)(F(x1) - 4>(X1)) , F cj,], then a( ! j'

x CF(Xi) - q,(x;)) = ! F (ib Ii I, .... n2 1). Since lJ(-- i)iCF(x,1
G(Xi)) =c a(·-l)i(F(xi) -- ¢(Xi)) .;- u( -··I}i(q,(xi) C(x;)) F q,
a( -1)i(¢(x;) G(x;)) is positive (i = I, ... , n2 I), we have (J2( I )z{

>< CF(x,) - G(x;))CF(X,i1)' G(Xi-tl)):- 0 (i 1.... , n~) or (F(x;) G(x,))

X (F(x'+l) - G(Xi-1l)) < °(i I, ... , r/2). Since (Ill' I1 z) is a degree of F
the last inequality implies that () is not in .F. Therefore, there is no function.
G, in .'7 where: F - ¢: C; c/l "
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Rice, in his thesis, used the term varis01vent family to describe his family
of approximating functions. Since our definition extends the ideas of Rice,
at the risk of confusion, we also call our approximating families varisolvent.

DEFINITION 2.17. Let ff" be a nonempty family of functions in C[a, b].
ff" will be called a varisolvent family offunctions if every function, F, in ff" has
a degree with respect to ff". (We show later that a family that is varisolvent
in the sense of Rice is also a varisolvent family in the above sense.)

From the above discussion we have the following alternation theorem for
varisolvent families.

THEOREM 2.18. Let ff" be a varisolvent family offunctions on the interval
[a, b]. Let F in :F have a degree (111 , n2) with respect to Y, and let eP belong
to C[a, b].

(I) If II F - eP II ~ II G - eP II for all G in ff", then either F - eP is a
constant or F - eP alternates 111 times on [a, b].

(2) If F - eP alternates n2 times on [a, b] then [I F - eP ~!I G - eP II
for all G in ff".

3. EXAMPLES

A. Haar System

DEFINITION 3.1. Let ff" be an n-dmiensional subspace of C[a, b] (11 ~ 1).
The set.'F is an n-dimensional Haar system if for every set of 11 distinct points
{xi}7=1 in [a, b] and for any set of n real numbers {yJ7~1 , there is a unique
element Fin ff" such that F(Xi) = Yi (i = I,... , n).

Let ff" be an n-dimensional Haar system and FE ff". It can be verified that
F has degree (n, n), i.e., n1 = nand n2 = n where n1 and n2 are as given in
Definition 2.3.

Further, it has been shown [l] that every Haar System, ff", of dimension 11

(n ~ 1) on [a, b] has a function which is positive on the whole interval.
Therefore, every function in .§C has (1, n) and (n, n) as degrees. The classical
alternation theorem will follow from Theorem 2.18 and Remark 2.14, that is,
if Fbelongs to ff" and eP belongs to C[a, b] where eP is not identical to F, then
F is a best approximation to eP from ff" if and only ifF - eP alternates n times.

B. Weak Chebyshev System

DEFINITION 3.2. Let ff" be an n-dimensional subspace of C[a, b]. The set
ff" is an n-dimensional weak Chebyshev system if every function Fin ff" has at
most 11 - I zero crossings (that is, if G is in C[a, b] and if {Xi}~1 is an
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I)I ..... /Iouincreasing set of points in [a, b] such that C(x,) C(X i 1)

then C is not in .~).

Remark 3.3. 11'.7" is an II-dimensional weak Chebyshev system of
eta, b], then every F in .~ has a degree of (0, II).

As a special case of a weak Chebyshev system, we have the polynomial
spline functions.

Remark 3.4. 11';/0--:- S".I,(X1 '00" x,l for II L the polynomial spline
functions with knots at {xJL with a Xi x, 1 b (I k I)

(that is, .T is the linear span of {I, ... ,Y". (x .\',)" , .... (x x,)"; where
(t)': c t" for t °and (t)" °for r 0), then Fin .T has a degree of
(II - I, II· L I+- k).

The proof of this requires the following observation.

Remark 3.5. Let.7" be a subset of C[a, b] and let Fin .7" have (II} , 11 2) as
a degree with respect to %. Let %} be a subset of J with F belonging to J l .

If F has (m] , m 2) as a degree with respect to.:f'; , then \m 1 ' fL,) is also a degree
of F with respect to .7".

C. Varisolrent Family in the Sense 0/ Rice

We wi]] now show that a varisolvent family in the sense of Rice is in fact
a varisolvent family as defined by Definition 2. \ 7.

DEFINITION 3.6. Let § be a subset of C[a, b]. The set J is a variso/rellt
family in the sense of Rice on [a, b] if for every F inJ, there is an integer
n(F) ~;:' I such that the following two conditions are satisfied:

(I) Let {x,};'~i) be an arbitrary set of n(F) distinct points in (a, b]
and let E be an arbitrary positive number. Then there is a ')I(F, E: {X,l:'I~}) 0
where if {Yi};'~;) is a set of real numbers such that 1',- F(Xi) Y

U I, ... , n(F», then there is a C in .'F such that F C E and
G(x,) Yi (i 1,00" n(F».

(2) If F] is in .~ and F(xi ) = F](Xi) (i 1,00" Il(F)) where {X,J:'I~)

[a, b] and the x,'s are distinct, then F and F] are identical on [a, b].

The number n(F) will be referred to as the rariso/vency degree of F.

If % is a varisolvent family in the sense of Rice on [a, b] and if F in 7" has
varisolvency degree m, then F has a degree (m, m) with respect to J. The
proof of this remark follows from the following remark and the second part
of the definition of a varisolvent family in the sense of Rice.

Remark 3.7. By using a zero counting argument (allowing for multiple
zeros) the following can be shown. Let g; be a varisolvent family in the sense
of Rice on [a, b]. Let Fin .7" have n( F) as the degree of varisolevncy (n( F) I).
Let E be a positive number and let IT \ I, 11 be arbitrarliy chosen. Let rS
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be an arbitrary element of {O, I} where 8 < n(F). Let {x;}7~i)+1-6 be an
arbitrary increasing set of points such that Xl = a and X n (F)+l-6 = b. Then
there is a function G in .'F with (F(a) - G(a))(F(b) - G(b)) oF 0 such that
il F - Gil < E and a(-I);(F(x) ~ G(x)) > 0 on the open interval (Xi, Xi~l)

(i = 1, ... , n(F) - 8).

D. Varisolvent Fami~v with Constant Error Phenomenon

If F belongs to §', §' a varisolvent family in the sense of Rice on [a, b]
with m the varisolvency degree of F (m > 3), then, in general, it is not known
whether or not there is a G in .? such that I! F ~ G Ii < E and
a(F(x) - G(x)) > 0 for all x in [a, b] for arbitrary positive E and for arbitrary
a in {-I, l}, i.e., whether or not (I, m) is a degree ofF. Additional hypotheses
have been shown to be sufficient to eliminate the possibility of a nonzero
constant error [6]. The following is an example of a family of functions, §',

which is varisolvent on [a, b], such that every function, F, in §' has a degree
(m, m) with respect to §' for some m :? 1, where m depends on F. Further,
there is a function Fin.? such that (1, m) is not a degree. It will be seen that
F is a best approximation to the continuous function F(x) - 1 (a :s;; X < b)
from §', and hence the error function F(x) -- (F(x) - I) is constant.

EXAMPLE 3.8. Let~ be a varisolvent family in the sense of Rice on [a, b]
which possesses a function, call it F, with degree of varisolvency m, m :? 3.
Construct the family §' as follows. Let

and
.? = {F} U 'fl.

Claim. The family 'fl is a varisolvent family in the snese of Rice. Further,
if G belongs to !Jj and if n is its varisolvency degree in ~ , then n is its
varisolvency degree in 'fl.

Proof Let G be an arbitrary function in 'fl. Denote its varisolvency
degree in ~ by n. Let El be a positive number and {X;}7~1 a set of n distinct
points in [a, b] be chosen arbitrarily. Since G belongs to 'fl we
have a :s;; Zl < Z2 < b such that (F(Zl) -- G(zl))(F(Z2) - G(Z2)) < O. Let
E2 = min{1 F(z;) - G(z;) 1 := 1,2} and E = minCE] , E2)' Since G belongs to
~ , we have the existence of y (G, E; Xl '00" X n ) > 0 such that if {y;}7~1 is a
set of real numbers such that IYi - G(x;)! < Y (i = 1'00" n), then there is a
function H in~ where II G - H II < Eand H(x;) = Y; (i = 1'00" n). We will
show that H is also in 'lJ. Since IF(z;) - G(z;) I :? E2 :? E > i G(z;) - H(z;) I
(i = 1,2) we have (F(z,) - G(Z;))2 = IF(z;) - G(Z;)j2 = I(G(z;) - H(z,»)
x (F(z;) - G(z;)) I (i = I, 2) or (F(z;) - G(Z;»2 - (H(z;) - G(zi)(F(z;) -
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G(~,) (F(~,)· H(~,»(F(z,) G(~,» 0 (i = 1,2). Now (F(~d H(~[l)

(F(~2)· H(~2))(F(Zl) G(zl))(F(~2) G(~2) 0 and (F(z[) . G(ZI»

>< (F(Z2)·· G(Z2» < 0 imply that (F(~]) H(z]))(F(~2) H(~2)) O. There-
fore H is in cf} and thus G has varisolvency degree 11 in 'fJ completing the
proof.

From the discussion in Section C above. it follO\\s that if n is the degree of
varisolvency of G in ~f}, then a degree of G in ~f} yvith respect to 'fJ is (II. Il).

It also follows from Remark 3.5 that (n. n) is a degree of G with respect
to /F.

Claim. F has degree (m. m) with respect to .·F

Proof (I) Let E O. a in: I. I:. 0 in:O. I: be arbitrary. and let
:lc, .d,]};"]" be an arbitrary increasing sequence of intervals with ('[ a and
d"/-<i ~c b. Since.#';. is a varisolvent family as shown above, there is a function
G in §I such that F G E and a( - l)i(F(xl G(x)) . 0 on [c,. iI,]
(i = 1..... 177 8). Since m ;) 2 we have G belongs to (f}.

(2) Let G belong to era, b) and let ix, [be a subset of [a. b] with
x, < x,,] (i I. .... m) such that (F(x,) G(x,))( F(x" I) (J(.y, I)) 0
(i= I, ... , 111). Then, since F has a degree (m, 1/1) with respect toFI • G does
not belong to .~ . and hence G does not belong toF. This completes the
proof of the claim.

From the construction of §, it is further noted that F does not have ( I. m)

as a degree with respect to .F. It is clear from the construction ofF that
the function F in .F is a best approximation to the continuous function
F(x) I (a x b) from §, and hence the error function F(x) (F(x) 11

is constant. We reemphasize the fact that it is not known whether a varisolvent
family in the sense of Rice permits a constant error function.

E. Another Example

A partly alternating famity, §, as defined by Dunham [5]. is a special ca~e

of a varisolvent family. If F belongs to .F, then there exists an m I such
that (l77.m) and (I.m) are degrees of F with respect to F.

F. Generali~ed Exponential SUIII.\

Let R" denote the n-dimensional linear space of real numbers. and let
denote some norm defined on R". (By the context. there is no confusion
between defined on R" and defined on Cra, b].) The symbol a denotes
an element of R". where a (a i , ... , a,,). If a, b arc in R" then a . b denotes
the usual dot product, that is. a . b 'L;J 1 aib, . If F(a: x) is a function of x

(a x b) which depends on the parameter a. then with sufficient
smoothness assumptions. the gradient of F at b is defined by (grad F)ib:\)
(iF/2a1)(b: x) ..... «P2aJ(b:y)).
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The following lemma relates a local Haar type property to a degree of a
function with respect to a family of continuous real-valued functions. rts
proof is omitted.

LEMMA 3.9. Let A be an open subset ofRn. Let F be a mapping from A into
era, b] (F: a -- F(a; x) (a ::s;; x ,,:;; b». Let .'F == {F(a): a in A}. Suppose for a
particular a in A, the function ofx F(a) has (n1 , n2) as a degree with respect to g;.
Further, assume (grad F)(a; x) exists and is continuous as a function of x. Let
rea, b - a; x) = F(b; x) - F(a; x) - (b - a) . (grad F)(a; x) (b in A). If the
zero function (as afunction ofx) has a degree (m1 , m 2) with respect to thefamity
of continuous functions of x in {b . (grad F)(a; x): a "'-:;; x ::s;; b, b in Rn}, and if
Ii rea, b - a)!i = 0(1 1b - a'I), then (m 1 , n2) is a degree of F(a) with respect
to g;.

DEFINITION 3.10. Let n ~ I. Let the set of generalized exponential sums,
E" , ofdegree n be defined as functions of x on the interval [a, b] as follows.

En = l±I aijXi exp(exiX): au's and ::Xi' S are real numbers;
\ i=l j=O

aij = 0 (j = 0,... , lIIi ; i = I, ... , I) or it, < exi+! (I ,:;; i < I),

aim; ofc· 0 (i = 1'00" t) and it1 (mi + I)::S;; n.~

The following theorem is due to Polya-Szego [7] (e.g., see [9]).

THEOREM 3.11. Every F in E" has at most n - 1 zeros or vanishes identi­
cally.

THEOREM 3.12. For every F in En , F has (I, 2n) as a degree with respect
to En.

Proof Let F belong to En .

(1) Let positive E and a in {-I, I} be arbitrarily chosen. If F(x) = 0
for all x in [a, b], then let G(x) =~aE (a ::s;; x < b). Then G belongs to En ,
a( -1)(F(x) - G(x» = EI2 > 0 and if F - G:I = EI2 < E. If F(x) =

ILl L~o a;jx i exp(cxix), define G in En such that G(x) = F(x) -I­
(aEI2)(exp(tX1x)/11 exp(tX1x)I,D. Then I[ F - G 'I = EI2 and a(--I)(F(x) - G(x» =

(E/2)(exp(tX1x)/11 exp(cx1x)!i) > O.

(2) Let G belong to En , then F - G belongs to E2n . According to the
theorem above, F ~ G has at most 2n - 1 zeros, or F - G == 0 for all x in
[a, b]. This completes the proof of the lemma.
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It is noted that since every element of EI/ has a degree with respect to E...
we have that En is a varisolvent family on [a, b].

THEOREM 3.13. The ~erofill1etioll has (II. II) as u dcgrec wilh respeel !o E ..

Proof Let ~ :L;'~ {fiX': ai a real numbers. i 0..... 11 I', C E,
The zero function is in .F1 so it has (II. II) for a degree with respect to .F1 C C, .
Therefore, according to Remark 3.5. (11.211) is a degree of the zero function
with respect to EI/ . It then follows from Theorem 3.16 that (11. 11) is a degree
of the zero function with respect to Eli .

The proof of the following theorem is lengthy and is omitted.

Lei F belollg 10 E" ll'here F(\) 1 I.';' H ai,X' exp(\,.I:)
. I (). I . I)" II l. . (I ..... I); L..i 1 (11/, ) 11.

k) as {f degree \rilh respeel !o L" .

THEOREM 3.\4.
wilh::>; X; 1 (I

Theil F has (II I. 11

The following corollary to Theorem 3.14 appeared as Theorem 4.2 in
Werner [9].

COROLLARY 3.15. Lell be af/me!ioll ill L" (11 1) Oil [a. b]. IFF 0 Oil

[a, b]. Ie! I k O. 1F F is 1101 Ihe ::ero fUllelion leI F(\) 2...: I I: 'i" " u\

exp(c\;x) wilh I L Xi Xi 1 (1 I). lJIi 0 (i L.... I). ail/, 0
(i~. I .... , I), alld k 2...: 1 (mi I) II. '-c! ¢ belollg !o qa. b] E" .

rD al!cJ'IIa!C\ ar( I) ~l F ¢ G '/' for all G ill E" . Ihe/1 F
leasl/1 -.l I !imes 011 [a. b].

(2) 1f1'- ¢ alle'l'Iw!es 11 k limes on [a. b). Ihe'll F
for all G ill EI/ .

Proof By Theorem 3.14 (Theorem 3.13 if F is identically zero) and
Lemma 3.12. respectively. it follows that (11 I. II k) and (1. 211) are
degrees of F with respect to E

"
. An application of the alternation theorem.

Theorem 2.18, and Remark 2.14 completes the proof.

G. Miscellaneous Examplcs

Remark 3.16. Let.F be an II-dimensional Haar system on [a. b]. let
[F;};'~l be a basis for ofF. and let A be a subset of RH. The family, .:i';. , defined
such that.~ {I.;'\ aiF;: (a 1 ..... an) in A: is a varisolvent family. If F
belongs to Y; , then (0, n) is a degree of F with respect to .~ . If F belongs to
~ such that F =. 2..:;'.1 of; and (a1 ..... a,,) is in the interior of A. then
(I. n) and (n. n) are degrees of F with respect to.;;; .

Remark 3.17. Let y be a mapping from A [u. b] C R~ into R
(y: (0:, x) .. ,. y(y, x)) such that (i /((\)i y((3 • .) exists and belongs to qa. h]
for all f3 in A U O. 1. ... ). Furthermore. suppose for all! \. III ()
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(i = I,... , I) and ai In A (i = I "00' I), the subspace of C[a, b],
({U:=l U;)~o (o/ca)i y(a;, x}> is a L:~l (mi + I)-dimensional Haar system.
Then, for each n ? I, the family of functions, Vn , of x where Vn =

{F in C[a, b]: F(x) = 0 (a ::::~ x <: b) or F(x) = L:~) L~~o aij(c/8a)i(a;, x)
where (F) ~ I, m; ~ 0 (i =-~ 1'00" I(F)), aij's are real, a;'s belong to A and
are distinct, aim ¢ 0 (i = 1'00" I(F)) and keF) = L:~) (m; + I) ::::;: n} is a
varisolvent family on [a, b] in the sense of Definition 2.17. Further, if F
belongs to Vn , then (n + I(F), n + keF)) and (I, n + k(F)) are degrees of F
with respect to Vn , where 1(F) =c keF) = 0 if F(x) = 0 (a :c:: X ::::;: b). Tn
particular, the above is applicable if A = {a in R: 0 < i a I < I}, [a, b] =

[- I, I] and (a, x) = (I + iXX)-l. The class of families, VII' described above
is a special of y-polynomials (e.g., see [3]).

Remark 3.18. It follows from the previous remark that if A = {a in R:
0< I a [ < I} and [a,b] = [-I,ll, then L n = {F in C[a,b]: F(x) = c,
where c is a constant, (-I x ::::;: I) or F(x) = aoo + L:~) L;:-o aij(e/oa)i
log(l -+- aix) where I(F) ? I, m; ? 0 (i = 1'00" I(F)), au's are real, iX/S
belong to A and are distinct, a,m. oft 0 (i = 1'00" I(F)) and keF) = L:~)
(m) + I) ::::;: n} is a varisolvent f~mily in the sense of Definition 2. I7.
Further, if F belongs to L n , then (n + I(F) + I, n + keF) -t- I) and
(1,11 + keF) + I) are degrees of Fwith respect to L n where I(F) = keF) = 0
whenever F is identically equal to a constant. (See [4] for a discussion when
I(F) = 1 and m1 ~-co 0.)
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