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[. INTRODUCTION

Let Cfa, b} be the normed linear space consisting of all real-valued
continuous functions deﬁned on 1he closed interval {a, b] (@ < b) with the

uniform norm ' 3 = max { (x)": xin [a. b]!. Further. let .# be a non-
empty subset of Cla, b]. For an arbltmry element, ¢. in Cla, b], an element F
n % is said to be a best approximation from .# to ¢ if | F - &' (IR

for all G in #. The set .# is called an approximating family of functions

n [a, b]. In order to obtain useful answers to questions about existence.
uniqueness, and characterization of best approximations it has been necessary
to consider special approximating families.

[n defining a varisolvent family & in 1961 (e.g.. see [8]}, Rice extracted the
properties of polynomials which were useful in the development of the
linear theory. At this time a fairly complete theory of varisolvent families
in the sense of Rice exists. Although Rice’s definition of varisotvency allows
as a special case the family of exponential sums, it does not include the much
studied family of generalized exponential sums (sums of exponentials with
polynomial coefficients).

Motivated by Rice’s definition of varisolvency and by the intriguing
alternation theorem for generalized exponential sums given by Braess {2],
we have attempted to define a class of nonlinear families of approximating
functions which includes both of the above families. At the risk of confusion.
we call families of this class varisolvent families.
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NONLINEAR APPROXIMATION 175
2. DEFINITION OF A VARISOLVENT FAMILY

In this section, # will be a subset of the continuous real-valued functions
[a, b]land | || will denote the maximum norm on CJa, b]. A degree of a function
in % will be assigned if it possesses certain properties relative to the family %
After some preliminary lemmas are presented, the notion of a varisolvent
family as an approximating family of functions is introduced. In general,
when approximating a continuous function by elements of a varisolvent
family, one is not guaranteed either the existence or the uniqueness of a best
approximation. However, an alternation theorem is given which characterizes
best approximations from a varisolvent family.

First, some definitions are needed.

DerNITION 2.1, Let {/;}7, be a sequence of closed intervals (n = 1).
The sequence {/;}7., will be called an increasing sequence of closed intervals
if for every x in /; and every y in I;,; (1 <7 < n), itit srue that x < y.

DEFINITION 2.2, Let ¢ be a continuous real-valued nonzero function on
[a, b). The function i is said to alternate n times (n == 0) on [a, b] if there is an
increasing set of points {x;}74] in [a, b] such that || = | ¢(x,)]
(i = 1,...,n -+ 1)and (x;) (x, 1) <O (l < i << n-+1). The increasing set
of points {x,\7*1 (n > 0) that satisfy the above is called a set of alternation
points for .

DeFINITION 2.3. Let % be a family of functions in Cla, b] and let F be
in #. The ordered pair of integers (n, , n,) with n, = Oand n, > 1 is a degree
of F with respect to Z if the following conditions are met:

(1) Let € > 0 and o in {—1, 1} be arbitrarily chosen. If n, = 1, then
there is a function, G, in % such that |F — G| < € and of —1)(F(x) —
G(x)) > 0 on [a, b]. (The factor (—1) is superfluous for this part of the
definition.) If n; > 1, if 8 is an arbitrary element of {0, 1}, and if {[¢; , d;]}}27°
is an arbitrary increasing sequence of closed intervals where ¢, = a and
d,ll,a = b, then there is a function, G, in % such that | F — G|l < ¢ and
o(—DYF(x) — G(x)) > 0on[c;,d] (i = I,..., n, — B).

(2) If Gisacontinuous function on g, bl and a < x; << <X, 4y < b
such that (F(x;) — G(x)NF(x;11) — G(x;41)) < 0(i = 1,..., ny), then G is not
in the family .#.

It is noted that n, = 0 is permissible and that if (0, »,) is a degree of F with
respect to .#, only the integer 1, gives any information about the function’s
relation to the rest of the family. Furthermore, if F has (1, , n,) as a degree,
(0, n,) is also a degree.



176 GILLOTTE AND MCLAUGHLIN

What the above definition is saying is that if the function. F. in -# has
(11, . ny) as a degree with respect to .%, then there is a function G in .# that is
arbitrarily close to F on {a, b} such that F - G alternates in sign on i,
(ny -~ 1) intervals. Furthermore, every member of % that is distinct from /-
crosses F at most n, -— | times in (a, b). If an approximating family, #.
satisfies Rice’s definition of Property A [8], then the first part of Definition 2.3
would be satisfied, but the converse is not necessarily true.

Remark 2.4, W (n,, n,)1s a degree of £ with respect to # . thenn, 1, .
To see this, assume #n, <2 iy {thus ny - ). Let e = 1o 1.a . 0, and
e, dii7y, be an increasing sequence of closed intervals (i o)
with ¢; =~ ¢ and d, = b.Because (n, .n,) is a degree of F, there ix a G in .7
such that (—1D(F(x)--G(x)) 0 on [e..d] ¢ 1. ). et
e, = d), which isin [¢, . d ]G+ 1..,m) Since (- DAF(x) Gy 0
(i = 1l,..,n), we have ( -1}F(x;) G)F(x,,)  Gly,op -0
lyeoowry = 1), But since n, - | = n,. we have (F(x;) - G(X))F(x; )
G(x;,1) << 0 (i = 1,..., 1,). This implics G is not in #. which is a contra-
diction.

The definition seems to indicate that a function is permitted to have more
than one degree. This is, in fact, the case. If F has a degree (n, . n,) with
respect to .%, the following lemma gives some information as to what other
degrees F may have.

LEMMA 2.5, If F belongs 1o 7% and has degree (n, . in,) with respect to # .
then

(1) (ny - 1, ny)is also a degree of F with respect to # as long as ny is not
zero or three:

(2} (ny,ny -~ 1) is also a degree of F with respect 1o # .

Proof. (1) Inthe case where iy = | or 2, the result follows immediately
from the definition. Let n; ~ 3. Let positive e, g in {1, 1t and & in 10, 1} be
chosen arbitrarily. Let {[¢; . d;]}}:;" ® be an arbitrary increasing sequence of
closed intervals where ¢, = @ and d, , 5 = b. I & — 0. then there exist &
in .# such that | F— G < € and ol —DH{F(x) - G(x)) -0 on ¢, .d]
(i = 1..,nm — 1) since (n,.m) is a degree of F. If 6 = 1. let n
—_3;((',,1 g — a'“J 4) 0. Define J, =[¢;.d] ( = 1..,n - 3. ./,,1 .
[dnl——:s -+ dnl——:} i 2:"‘]’ Jn1— 1 [dnl—:; - 3#«, dnl»:} . 4}"]* Jn) E [('n‘ 2 dn} 2}
Since (i, , ny) is a degree of F, there exist G in % suchthat F - G = < ¢ and
ol —DUF(x) — G(x)) =~ 0onJ,; (i = 1,...,m). Thus o( — D F(x) - G(x)) O
onle,.d) (i = l....,n - 3)and o — D" (F(x) — G(x)) == o - 1)} F(x)
G(x)) - 0on e, o, dy ]

(2) The proof follows immediately from the definition.
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To illustrate why n, == 3 in Lemma 2.5 we now construct #, a family of
functions on [a, ] such that the zero function belongs to % and the zero
function has (3, 3) as a degree, while (1, 3) and (2, 3) are not degrees. Let #
denote the set of all functions of the form c(x — x)(x — x,) or c(x — xy)
where ¢ is an arbitrary real constant and the x,’s are distinct values in the
open interval (a, b).

An immediate consequence of Lemma 2.5 is the following corollary.

COROLLARY 2.6. If Fin % has a degree (n, , ny) with respect to & and
ny = 3, then (my , my) is also a degree where 3 < m < ny and ny < my < 0.

If Fin # is an approximation from & to a continuous real-valued function,
¢, the next four lemmas give sufficient conditions for the existence of an
approximation to ¢ that is better than F.

LemMma 2.7. Let Fin F have a degree (n, , ny) with ny, > 2 and let ¢ belong
to Cla, b). If F — ¢ alternates ny — 1 times and does not alternate ny times,
then there is a function, G, in F such that || G — ¢ || < || F — ¢ 1.

Proaf. Let {x;}i1, be a set of alternation points for F — ¢ in [a, b]. Define
Xo = @, Xp 11 = b,

x* = min{x € [x; 1, x;]: (F(x) — $(x)) = (F(x) — $(x)}

and

Y = max{x € [x;, x;1]: (F(x) — ¢(x)) = (F(x;) — $(x))} (i = L...,m).

The point x;2(x,V) does exist since the set of which we are taking the minimum
(maximum) of is compact, and F — ¢ is continuous.

Claim. x,V < xf, (i =1,.,n —1). Indeed this is true, since
(F(x;Y) — ¢(x;V)) = (F(x)) — (x1), (F(xz{‘—u) - ¢(le7+1)) = (F(xi41) — $lxi))
and (F(x;) — ¢(x))F(xia) — P(x;,1)) <0, it follows that (F(x,) — $(x;"))
% (F(xtp) — é(xF4) < 0 and thus x,;V = x-., . Continuing in the proof of
the claim, suppose x7,, < x;V. We also have x; < x7., < x;U < x;,, . Define
{yJi® such that y; = x; (j = lLyi), Yiux = Xiy1» Vi = %Y, and
y; = xj_s(j = I + 3,..., n; + 2). Thus F — ¢ alternates at least n; - 1 times
and hence alternates n; times which contradicts the assumption that F — ¢
does not alternate n, times. Therefore the claim is true. Define p =
Imin{x/,; — x;Vri=1,.,n — 1} and define I, = g, x,V 4 p), I, =
bt — g, x,¥ + pl (1 <i<n)and I, = [x; — p,b). Because of the way
w is defined, {I;}71, is an increasing sequence of closed intervals. Select o in
{—1, 1} such that o(—D(F(x) — ¢(xy)) = || F — ¢Il. Tt follows from the
definition of the intervals [x£, x,U] (i == 1,..., ;) that ¢, is a positive number,
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where € :- min;; _, min; £ b - ol DHF(x) - ¢> Nrxin A
short continuity argument will show that sup{l F(x) - &(x)': xin [a, b]
Ui I < F — ¢, therefore €,. defined as e, F ¢
sup{; F(x) — ¢(x)|: xin [a, b] - U2, [l is positive. Let e - min(e, . ).

Since (# , 1,) is a degree of F, there exist (G in.# suchthat F G -7 eand
o —DHF(X) - G(x)) ~0enl, (i ~ 1,.. Hy).
Now we show that G ¢ - F - & . it suffices to show that

G(x)  Hx) <t F- ¢iforall vinfa, b). I xisinfa, b] U [, . then

CG(x) — (X)L G(X) - F(X) - F(x) - blx) e F(x) - dly)

"y

<€, 1 sup ) F(x) — ()] v in[a, b - U 1 CF -

If xisin [, for some / (1 <. i " ny), by definition of G and ¢, . respectively.
we have
—e < o(--1D)(G(x) - F(x) 0
and
F—d¢ -¢ al - DY(F(x) - dx) F-é .

By adding these inequalities, we obtain
—F ¢ (e €~ o DG $lx)) - F -¢ forallxin/ .

thus | G(x) — &(x) = F - ¢ for x in U;-/‘l I, . Thus the proof of the
lemma is complete.

Remark 2.8. The proof of this lemma does not require the fact that the d
used in Definition 2.3 be allowed to assume the value one. Now, by using the
fact that § may assume the value one, one can prove the following lemma.

LemMma 2.9, Let Fin # have a degree (3, n,) with respect to # and let ¢
belong to Cla, b] IfF- ¢ (I/f(’l nates once but does not alternate twice, then
there exist G in F such that ; I

CoroLLARY 2.10. Let F in .7 have a degree (ny , n,) with respect to F
m = 2) and let ¢ belong 10 Cla, b). If F — & alternates once and does not
alternate n, times then there exist G in # such that "G —~ ¢ <= "F- ¢ .

The proof follows from Lemmas 2.7, 2.9, and Corollary 2.6.
LemMma 2,41, Let Fin # have a degree (3. n,) with respect to -# and let

b belong ro Cla, b]. If F - & is not a constant function and F & does not
alternate once. then there is a function, G, in # such that G ¢ F -
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Proof. Let (a; , b;) C [a, b] such that | F(x) — &(x)| <||F — ¢ for all x
in [a; , b,]. It is noted that a nonempty (a, , b,) exists since F — ¢ is not a
constant function. Define I, = [a, a,), [, = [a; + ¥b, — a)), b, — (b, — a)],
Iy = [b,,b], let o be in {—1, 1} such that there is a y in [a, b] with
a(—I)F(y) — $(») = | F — &] (o is well defined since F — ¢ does not
alternate once). Furthermore, define ¢, and e, as ¢ = min{|F — ¢| +
o(—=DF(x) — d(x): xin LU L}, e, = | F — 1 — sup(| F(x) — (x)|: xin
(a, , b)}. Tt is noted that €, and €, are positive. Let € = min(e, , €,). Since
(3, ny) is a degree of F, there exist G in .# such that | F— GV < e and
o(— DY F(x) — G(x)) >0on /(i = 1,2,3).

Now we show that !G — ¢| <||F — ¢}. It suffices to show that
[ G(x) — ¢(x)} < | F — ¢! forall xin [a, b]. If x belongs to (a, , b,), we have
LG — $)] <1 Gx) — F)l + 1 F@) — $x) < ¢ + | F(x) — $(x)] <
€ + | F(X) — ¢(x)] < €5 + sup{l F(x) — Hx):xin(ay, b))} = |F— | Ifx
belongs to [; for 7 = | or i = 3, we have

—e < o(—D(G(x) — F(x)) = o ~1)G(x) — F(x)) <0

and
—F— ¢l + & < o(—1)F(x) — $(x)) <[ F— ¢l
Thus adding the above two lines gives
—IF — ¢l + (& — &) < o(—ING(x) — $(x)) <!|[F— |

or | G(x) — ¢(x)] <| F— ¢l for all xin I; U I,. Since | G(x) — $(x)| <
L F — ¢ |l for all x in [a, b], the proof of the lemma is complete.

LEmMA 2.12. Let Fin # have a degree (ny , n,) with respect to F (n; = 1
orn, = 2) and let ¢ belong to Cla, b). If F and ¢ are not identical on [a, b) and
if F — ¢ does not alternate once then there exist G in & such that | G — ¢ || <
IF— ¢l

Proof. Lete = min{| F — ¢ |l + o(—1D(F(x) — $(x)): x in [a, b]} where o
belongs to {—1, 1} such that for some y in [, b}, o(—1)}F(y) — &( ) =
IF — ¢ 1. Since (1, n,) is a degree of F (use Lemma 2.5 if n; = 2), there exist
G in & such that | F — G| << € and o(—1)(F(x) — G(x)) > O on [a, b]. It is
easily shown that G is the desired function.

We now give a necessary condition for F with a degree (n, , n,) with respect
to # to be a best approximation from & to a continuous function on [a, b].

THEOREM 2.13. Let F in F have a degree (n, , ny) with respect to & and
let ¢ belong to Cla, bl. If |F — ¢l < |G — ¢ || for all G in F, then F — ¢

alternates at least ny times or F — ¢ is a constant function.

640(21/2-5
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Proof. If ny =- 0, then by continuity of F -~ ¢ on [, b, there is an x in
[a, b] such that | F(x) ~— $(x) ==  F— ¢ ..

If ny, 2= 1, assume F — ¢ is not a constant funciion, and £ -- ¢ does not
alternate i, times; then the previous lemmas insure the existence of a G in .
such that "G ~ ¢ <. | F-— ¢ 1, which is a contradiction.

Remark 2.14. The conclusion in Theorem 2.13 can be made stronger by
using Lemma 2.12. That is, if Fis in &# and F has (1, n,) or (2, n,) as a degree
with respect to %, then/ F — ¢ .. G ~ ¢ for all G in & implies that the
error function £ — ¢ cannot be a nonzero constant on [a, b].

If Definition 2.3 were weakened by requiring & to be zero, then an
alternation theorem weaker than Theorem 2.13 would follow, e.g.,

ExampLE 2.15. Let # denote the set of all functions in Cf--1, 1] of the
form c(x — xpHx -- X)X — Xx;) where ¢ is an arbitrary real constant and the
x;’s are arbitrarily chosen such that --1 <« x; < x, < x, <2 1. The zero
function has (0, 4) as a degrec. The only property that the zero function is
lacking that prevents it from having both (2, 4) and (4, 4) as degrees 15 that
the & in Definition 2.3 may not assume the value one. As Remark 2.8 indicates
if ¢ alternates three times but does not alternate four times, then there is a ¢
in & suchthat! G — ¢! < ¢ . By a similar argument, if ¢ alternates once
but not twice, there is a G in & such that | G - ¢ . <« | ¢:. If, from this
family, zero is the best approximate to a function ¢, then the maximum
number of alternations of ¢ must be either 0, 2, 4, or more. This is illustrated
by the functions 1, 2x — 1, and 8x* - 8x% - [, each of which have the zero
function as a best approximation from # , and they alternate & maximum of
zero, two, and four times, respectively, with respect to the zero function.

The following theorem gives a suflicient condition for the function £ with u
degree (1, , n,) with respect to .# to be a best approximation to ¢ in Cla. b).

THEOREM 2.16.  Let F belong to & and lei ¢ belong to Cla. b). If +- ¢
alternates n, times in [a, b] and if F has « degree (i, nyy with respect to .+ .
then ' F— ¢\ < G — i for all G in o+

Proof. Suppose G is in Cla, b] such that | F - ¢ G — .. Let
{x,472t be a set of alternation points for the function F — &, Let ¢ be
in {—1,1} such that of—I}F(xy) — ¢(x))  1F-- ¢, then ol -1V
XAF(x) — )y = F— b (i~ b...n~ 1} Since of —1)(F(x))
G(x) = o DHF(xy) — ¢(x) -+ a(—~Ddlxy - Gx) = F - ¢
o(—Di(p(x;) - G(x;)) 1s positive (7 = l,...,n, -~ 1), we have o3 —1)¥*
YOAF(x) — GIx)UF(x,) - - Glxny)) = 00 = 1o,m) or (Flx) - Gy
X (Flxpq) — G(xi)) < O (7 == ,..., ny). Since (ny,i,) is a degree of f.
the last inequality implies that G is not in 7. Thercfore, there is no tunction.
G,in & where | F — ¢i G - ¢ .
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Rice, in his thesis, used the term varisolvent family to describe his family
of approximating functions. Since our definition extends the ideas of Rice,
at the risk of confusion, we also call our approximating families varisolvent.

DerNITION 2.17. Let & be a nonempty family of functions in Cla, b].
Z will be called a varisolvent family of functions if every function, F, in & has
a degree with respect to % . (We show later that a family that is varisolvent
in the sense of Rice is also a varisolvent family in the above sense.)

From the above discussion we have the following alternation theorem for
varisolvent families.

THEOREM 2.18. Let F be a varisolvent family of functions on the interval
[a, b]. Let F in F have a degree (n, , n,) with respect to #, and let ¢ belong
to Cla, b].

D) INF—¢| <|G— |l for all G in F, then either F — ¢ is a
constant or F — ¢ alternates n, times on {a, bl.

Q) If F— ¢ alternates n, times on [a, b} then |F — ¢ < |G — ¢
Jor all G in &F.

3. EXAMPLES

A. Haar System

DEFINITION 3.1. Let & be an n-dmiensional subspace of Cla, b] (n = 1).
The set & is an n-dimensional Haar system if for every set of n distinct points
{x;}7, in [a, b} and for any set of n real numbers {y;}., , there is a unique
element Fin & such that F(x,) = y; (i = 1,..., n).

Let # be an n-dimensional Haar system and F e %. It can be verified that
F has degree (n, n), i.e., n, = n and n, = n where n, and n, are as given in
Definition 2.3.

Further, it has been shown [1] that every Haar System, %, of dimension n
(n = 1) on [a, b] has a function which is positive on the whole interval.
Therefore, every function in & has (1, ») and (n, #) as degrees. The classical
alternation theorem will follow from Theorem 2.18 and Remark 2.14, that is,
if F belongs to # and ¢ belongs to Cla, b] where ¢ is not identical to F, then
Fis a best approximation to ¢ from # if and only if F — ¢ alternates » times.

B. Weak Chebyshev System

DeriNITION 3.2.  Let F be an n-dimensional subspace of Cla, b). The set
F is an n-dimensional weak Chebyshev system if every function F in & has at
most n — 1 zero crossings (that is, if G is in Cla, b} and if {x;};; is an
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increasing set of points in [a, &) such that G(x;) G{x, ;) - OG- l....0 - D
then G is not in F).

Remark 3.3. W # is an n-dimensional weak Chebyshev system of
Cla, b}, then every F in F has a degree of (0, n).

As a special case of a weak Chebyshev system, we have the polynomial
spline functions.

Remark 3.4, If # = S, x;,...,x) for v = i, the polynonial spline
functions with knots at {x}¥ , with a ~ x; ~ x,, - b (1 =i -k -1
(that is, . is the linear span of {l...,v". (v x)7 ..(x - x)7 where
()7 =t fort=0and ()" -+ O for ¢ - 0). then F in.# has a degree ot
(n—1,n-+-1+k).

The proof of this requires the following observation.

Remark 3.5. Let.# be a subset of Cla, b] and let £ in # have (i, 1,) as
a degree with respect to #. Let %, be a subset of .# with F belonging to .#, .
If Fhas (m, , m,) as a degree with respect to .#] . then (m, . n,) is also a degree
of F with respect to -#.

C. Varisolvent Family in the Sense of Rice

We will now show that a varisolvent family in the sense of Rice 13 in fact
a varisolvent family as defined by Definition 2.17.

DerinviTiON 3.6, Let .# be a subset of Cla, b]. The set .# is a varisolvent
Samily in the sense of Rice on {a, b] if for every F in .#, there is an integer
n(F) = 1 such that the following two conditions are satisfied:

(1) Let {x;}“D be an arbitrary set of n(F) distinct points in [a, b]
and let e be an arbitrary positive number. Then there is a p(F, e {x}/{{) -0
where if {3} is a set of real numbers such that ; v, — F(x,) - y
(i = 1., n(F)), then there is a G in % such that "F - G ¢ and
Glx;) = v, (i = 1., n(F)).

(2) If Fiisin . # and F(x;) == Fj{x;) G - L., 0(F)) where {x/' T
[a, b] and the x,’s are distinct, then £ and F| are identical on [a, b].

The number n(F) will be referred to as the varisolvency degree of F.

If # is a varisolvent family in the sense of Rice on [a. b] and if Fin # has
varisolvency degree m, then F has a degree (m, m) with respect to -#. The
proof of this remark follows from the following remark and the second part
of the definition of a varisolvent family in the sense of Rice.

Remark 3.7. By using a zero counting argument (allowing for multiple
zeros) the following can be shown. Let % be a varisolvent family in the sense
of Rice on [qa, b]. Let Fin . # have n(F) as the degree of varisolevney (n(£) - 1),
Let € be a positive number and let v e{ -1, 1} be arbitrarliy chosen. Let
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be an arbitrary element of {0, 1} where § < n(F). Let {x;}7)*'~® be an
arbitrary increasing set of points such that x; = a and x5, = b. Then
there is a function G in % with (F(a) — G(a))(F(b) — G(b)) 5 0 such that
| F— Gi < eand o(—1)(F(x) — G(x)) > 0 on the open interval (x;, x;.4)
(i = 1,...,n(F) — 8).

D. Varisolvent Family with Constant Error Phenomenon

If F belongs to #, # a varisolvent family in the sense of Rice on [a, b]
with m the varisolvency degree of F (im > 3), then, in general, it is not known
whether or not there is a G in % such that [|[F — G! < e and
a(F(x) — G(x)) > Ofor all xin [a, b] for arbitrary positive € and for arbitrary
oin{—1, 1}, i.e., whether or not (I, m) is a degree of F. Additional hypotheses
have been shown to be sufficient to eliminate the possibility of a nonzero
constant error [6]. The following is an example of a family of functions, &,
which is varisolvent on [a, 4], such that every function, F, in # has a degree
(m, m) with respect to & for some m > 1, where m depends on F. Further,
there is a function F in .# such that (1, »1) is not a degree. It will be seen that
F is a best approximation to the continuous function F(x) — I (a < x < b)
from #, and hence the error function F(x) -— (F(x) — 1) is constant.

ExampLE 3.8. Let % be a varisolvent family in the sense of Rice on [a, b]
which possesses a function, call it F, with degree of varisolvency m, m >= 3.
Construct the family % as follows. Let

% = {G in % for some a < z; < z, < b, (F(zy) — G(z1)(F(z,) — G(zy)) < 0}

and
F ={Flud¥9.

Claim. The family % is a varisolvent family in the snese of Rice. Further,
if G belongs to & and if n is its varisolvency degree in %;, then n is its
varisolvency degree in %.

Proof. Let G be an arbitrary function in %. Denote its varisolvency
degree in #, by n. Let €, be a positive number and {x,};_; a set of # distinct
points in [a b] be chosen arbitrarily. Since G belongs to % we
have a << z; < zy < b such that (F(z) — G(z))(F(z) — G{z2)) < 0. Let
e; = min{| F(z;) — G(z;)| := 1,2} and € = min(e, , €;). Since G belongs to
F, , we have the existence of y (G, €; xq ,..., x,,) > 0 such thatif { y,}7; is a
set of real numbers such that | y; — G(x,;)] < vy (i = 1,..., n), then there is a
function H in #; where || G — H || < eand H(x,) = y,; (i = 1,..., n). We will
show that H is also in %. Since | F(z;) — G(z)| > €, = € > | G(z;) — H(z)!
(i = 1, 2) we have (F(z,) — G(z))* = | F(z;)) — G(z)* = [(G(z) — H(z)
X (F(zp) — Gl (1 = 1,2) or (F(z) — G(z))* — (H(z;) — Gz))(F(z;) —
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G(z)) = (F(z) - HEIWF(z) - Gz)y 0 = 1, 2). Now (F(zy) — H(z)
O (Fzy) - H(zZ))(F(z) - GEINF(z) — G(z) 0 and (F(z;) - Gz )
< (F(z) - G(z,)) < 0imply that (F(z,) — H(E)WF(Z,) - H(z,) < 0. There-
fore H is in 4 and thus G has varisolvency degree 1 in % completing the
proof.

From the discussion in Section C above, it tollows that if /7 is the degree of
varisolvency of G in %, then a degree of G in ¥ with respect to 4 is (n. ).

It also follows from Remark 3.5 that (n. n) is a degree of G with respect
to .# .

Claim. F has degree (m, m) with respect to -# .
Proof. (1) Let e -0, ¢ in -1, 11, 5 in 40, 1} be arbitrary. and let
e, . d;)1 2 be an arbitrary increasing sequence of intervals with ¢, - ¢ and

d,,..s = b. Since # is a varisolvent family as shown above, there is a function
G in # such that "' F -G < eand o -~ D)(F(lx) - Gx)) -0 on [¢,.d]

(i = l....m--25). Since m -5 =2 we have G belongs to 4.
(2) Let G belong to Cla. b} and let {x;}7"" be a subset of [a, b] with
X; <0 X (0= le,m) such that (F(x;) ~ G F(x,.,) - Gy, 0

(i = 1,..., m). Then, since F has a degree (m, m) with respect to .#, , G does
not belong to .#, . and hence G does not belong to - #. This completes the
proof of the claim.

From the construction of .7# | it is further noted that £ does not have (1, m)
as a degree with respect to #. It is clear from the construction of .# that
the function F in .# is a best approximation to the continuous function
F(x) - Mg x - b)from.#. and hence the error function F(x)  (F(x) 1)
is constant. We reemphasize the fact that it is not known whether a varisolvent
family in the sense of Rice permits a constant error function.

E. Another Example

A partly alternating family, .#, as defined by Dunham [5], is a special case
of a vansolvent family. If F belongs to -#, then there exists an m - 1 such
that (m. m) and (1, m) are degrees of £ with respect to .#.

F. Generalized Exponential Sums

Let R denote the i#~-dimensional linear space of real numbers, and let
denote some norm defined on R”. (By the context, there 1s no confusion
between  defined on R” and | | defined on C[a, ].) The symbol a denotes
an element of R, where a -~ (a,....,¢,). If a, bare in R" then a - b denotes
the usual dot product, thatis,a-b - ¥/, ab, . If F(a: x) is a function of x
{a =  x -~ b) which depends on the parameter a. then with sufficient
smoothness assumptions, the gradient of F at b is defined by (grad F){b: v)
(¢Fica) (b x),.... (¢Fléa, ) (b: x)).
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The following lemma relates a local Haar type property to a degree of a
function with respect to a family of continuous real-valued functions. Its
proof is omitted.

Lemma 3.9.  Let A be an open subset of R*. Let F be a mapping from A into
Cla, b] (F: a — F(a; x) (a << x < b)). Let F == {F(a): ain A}. Suppose for a
particular ain A, the function of x F(a) has (n,,n,) as a degree with respect to %
Further, assume (grad F)(a; x) exists and is continuous as a function of x. Let
r(a,b — a; x) = F(b; x) — F(a; x) — (b — a) - (grad F)(a; x) (b in A). If the
zero function (as a function of x) has a degree (m, , my) with respect to the family
of continuous functions of x in {b - (grad F)(a; x): a << x < b, bin R}, and if
ir(a,b — a)l = o(llb — a'i), then (m,,n,) is a degree of F(a) with respect
to #.

DEFINITION 3.10. Let n > 1. Let the set of generalized exponential sums,
E, , of degree n be defined as functions of x on the interval [a, b] as follows.

2

i
a;x¥ exp(ax): a;’s and ;s are real numbers;

M~

_
£, = |

i=1j=0

i

a; =0(j=0,0.,m;i=1..,0D)orua <o, (1 <7<,

!
Am;, # 0 (i = 1,..., /) and Y (m+ 1) < n.g
Z=1

The following theorem is due to Polya—Szego (7] (e.g., see [9]).

THEOREM 3.11. Every F in E, has at most n — 1 zeros or vanishes identi-
cally.

THEOREM 3.12. For every F in E, , F has (1, 2n) as a degree with respect
foE, .

Proof. Let F belong to E,, .

(1) Let positive € and o in {—1, 1} be arbitrarily chosen. If F(x) = 0
for all x in [a, 6], then let G(x) = }oe (@ << x <C b). Then G belongs to £, ,
o(—1D(F(x) — G(x)) = €2 >0 and |[F— G| =¢2 <e If F(x)=
Z;zl S auxi exp(ex), define G in E, such that G(x) = F(x) -
(oe/2)(exp(oyx)/|| exp(eyx)|). Then | F — G | = ¢/2 and o(—1)(F(x) — G(x)) =
(/2)(exp(ayx)/l| exp(ayx)'f) > 0.

(2) Let G belong to E, , then F — G belongs to E,, . According to the
theorem above, F — G has at most 2n — 1 zeros, or F — G = 0 for all x in
[a, b]. This completes the proof of the lemma.
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It is noted that since every element of £, has a degree with respect to F, .
we have that £, is a varisolvent family on [a, b].

THEOREM 3.13.  The zero function has {n. ny as a degree with respect to £

Proof. Let #, - {3y ax': a, a real numbers. i O...n 11 CE
The zero function is in.#; so it has (n, n) for a degree with respect to.#, C L,
Therefore, according to Remark 3.5, (n, 2n) 1s a degree of the zero function
with respect to £, . 1t then follows from Theorem 3.16 that (n. 1) is a degree
of the zero function with respect to £, .

The proof of the following theorem is lengthy and is omitted.

"ot

THEOREM 3.14.  Let F belong to E, where Fixy S 377 a0 explagy)
with a; < x (1 i< Doa, — 0G - Lok S m b

Then F has (n -~ l,n - kY ay a degree with respect to E,, .

The following corollary to Theorem 3.14 appeared as Theorem 4.2 in
Werner [9].

COROLLARY 3.15.  Let F be a function in E, (n Wonla bl If 0 on

!

[a,b], let | = k = 0. If Fis not the zero function et Fixy = 3, ) S a, v

t

expla;x) with 17 10 x, -0~y (070 Dm0 b h. a.. 0
(i = 1., 0), and k Z; L Y oo Let ¢ belong to Cla. b]  E, .
(Y If F ¢ = G o foral GinE, . then F & alternates ar

least n [ times on {a. b).

2y IfF — ¢alternatesn -k timeson {a. b). then F - ¢ G b
for all Gin E, .

Proof. By Theorem 3.14 (Theorem 3.13 if F is identically zero) and
Lemma 3.12. respectively, it follows that (n - /l.n - k) and (i.2n) are
degrees of £ with respect to £, . An application of the alternation theorem.
Theorem 2.18, and Remark 2.14 completes the proof.

G. Miscellancous Examples

Remark 3.16. Let # be an n-dimensional Haar system on [a, b], let
{F27 | be a basis for &, and let 4 be a subset of R”. The family, %, , defined
such that % = {3/, a;F (a4 ... a,)in A¢ is a varisolvent family. If F
belongs to & , then (0, ») is a degree of F with respect to .%; . If F belongs to
Z, such that F == 3, a,F; and (a, .....a,) is in the interior of 4. then
(1. n) and (n., n) are degrees of F with respect to .#, .

Remark 3.17. Let y be a mapping from 4 > [a,b]C R* mto R
(v (a, x) - > p(x, X)) such that (¢ /@x) ¢(B, ) exists and belongs to Cla. b]
for all Bin 4 (j - 0.1..). Furthermore. suppose for all / - 1. m. 0
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(¢(=1.0) and o« m A ( = 1..17), the subspace of C(la, b],
<{U£=1 U;’Zo (0)éa) y(o;, x}> 15 a Zégl (m; + 1)-dimensional Haar system.

Then, for each n > 1, the family of functions, K@,’ of x where V,
{

{F in C[a1 b] F(X) = 0( \\ X < b) or F(X) - Zz =1 Z] 0 ,,(c‘/@a) (Ot, L] x)
where (F) = 1, m; = 0 (i = 1,..., (F)), a;;’s are real, «;’s belong to 4 and
are distinct, a;,,, == 0 (i = I,...,l(F)) and k(F) = Zl“l) (m; + 1)y < n}is a

varisolvent family on [g, b] in the sense of Definition 2.17. Further, if F
belongs to V,,, then (n + I(F), n + k(F)) and (1, n + k(F)) are degrees of F
with respect to V,, where {F) = k(F) =0 if F(x) =0 (¢ << x < b). In
particular, the above is applicable if 4 = {ain R: 0 << |« | < 1}, {a, b] =
[—1, 1] and (a, x) = (I + ax)~L. The class of families, V¥, , described above
is a special of y-polynomials (e.g., see [3]).

Remark 3.18. Tt follows from the previous remark that if 4 = {« in R:
0 <|al <1} and [a,b]j[~1 1], then L, = {F in Cla, b] F(x) =
where ¢ is a constant, (—1 <{ x <{ 1) or F(x) = ay, -+ ZI‘F) Z] o dij C/C’oc)’
log(l + o;x) where (F) =1, m;, =0 (i = 1,..., I(F)), a;’s are real,
belong to A and are distinct, a;, =0 (i = 1 . I(F)) and k(F) = Zf“vl)
{(m; + 1) < n} is a varisolvent family in the sense of Definition 2.17.
Further, if F belongs to L,, then (n +IF)—+ l,n+ k(F)~+ 1) and
(1, n 4 k(F) + 1) are degrees of F with respect to L, where /(F) = k(F) =0
whenever F is identically equal to a constant. (See [4] for a discussion when
I(F) = 1 and m; = 0.)
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